Detecção de discurso de ódio & Inteligência Artificial

Parte do texto a seguir foi publicado no Jornal do Commercio (JC) em 10/06/2024 (link)

A primeira rede social a atingir um patamar de um milhão de usuários foi a MySpace, em 2004. Muitas outras redes sociais surgiram de lá para cá e, atualmente, Facebook, YouTube e WhatsApp possuem mais de 2 bilhões de usuários cada uma. Em menos de duas décadas, testemunhamos um rápido crescimento e, dada nossa presença maciça nessas redes, não é à toa que a forma como as usamos esteja moldando diversos aspectos do nosso comportamento. 

As mudanças abrangem não apenas as formas como nos comunicamos e trabalhamos, mas também a forma como aprendemos e nos divertimos, além de diversas outras áreas da interação entre humanos, entre máquinas e entre ambos. Estamos conectados, online e aprendendo a lidar com tal novidade.

Avançamos e nos apropriamos de diversas vantagens dessa nova realidade. Mas, vale destacar que a fácil disseminação e a crença de anonimato fazem das mídias sociais um ambiente bastante utilizado para a propagação dos mais diversos assuntos. Entre eles, destaca-se o discurso de ódio que pode ser definido como ataque ou ameaça a outras pessoas motivados por raça, gênero, nacionalidade, orientação sexual, entre outros.

As redes sociais rejeitam o discurso de ódio em seus contratos e indicam que contas/usuários que promovam esse tipo de discurso podem sofrer sanções. Entretanto, o volume de postagens nessas redes é imenso. Só o X (antigo Twitter) veicula, em média, seis mil postagens por segundo, ou seja, 500 milhões de postagens todo dia. Estes são dados de apenas uma rede social.  Logo, a ideia de se ter intervenção humana, com a finalidade de verificar possíveis infrações, torna-se inviável.

Além da dificuldade associada ao volume, a tarefa de indicar se um discurso é de ódio ou não requer pessoas especializadas, pois um discurso muitas vezes pode ser confundido com sarcasmo, humor, ou linguagem ofensiva que, em muitos casos, pode ser protegida por lei. Dadas essas especificidades, realizar a moderação das postagens em redes sociais usando humanos é um trabalho desafiador, além de lento e não escalável. Logo, é necessário automatizar o processo e repassar a tarefa para programas de computador que são facilmente replicáveis e respondem rapidamente.

A tarefa de detectar discurso de ódio pode ser descrita de maneira simples: dado um conteúdo, deseja-se que o sistema responda sim, se o conteúdo contiver discurso de ódio, e não, caso contrário. Mas, a computação tradicional, determinística e que trabalha segundo regras estáticas, não se apresenta como uma ferramenta adequada para a tarefa em questão.

Daí emerge a aprendizagem de máquina, que é um ramo da Inteligência Artificial capaz de aprender a partir de dados. Ou seja, ao invés de ser explicitamente programada com regras extraídas de especialista humanos, as máquinas de aprendizagem capturam informações diretamente dos dados (postagens contendo ou não discurso de ódio) de maneira autônoma e automática, sendo assim, capazes de lidar com a incerteza inerente ao processo, além de poderem ser ajustadas para se adaptar às mudanças. 

As redes sociais já se valem de máquinas que aprendem para detectar e tentar impedir a disseminação de discurso de ódio. Porém, ainda há bastante espaço para ajustes e melhorias, pois a detecção automática de discurso de ódio é uma tarefa desafiadora e mal-definida; ainda não há consenso sobre como discurso de ódio deve ser definido. Logo, o que é discurso de ódio para uns pode não ser para outros e, tais definições conflitantes criam um ambiente desafiador para a avaliação de tais sistemas. Dentre os muitos os desafios para o avanço desta tecnologia, é possível destacar os seguintes:

Rotulagem: as máquinas de aprendizagem precisam de dados para discernir quais discursos são de ódio e quais não são. Essa triagem e construção de um corpus que será apresentado à máquina é uma tarefa inicialmente delegada aos humanos. Ao rotular um discurso em ódio ou não-ódio, humanos levam consigo seus preconceitos para o corpus que alimentará a máquina de aprendizagem que, por sua vez, será ineficaz no tratamento dessas incorretudes.  Assim, é desejável minimizar o viés desse processo de rotulagem e, para tal fim, comitês diversos, formados por pessoas especializados, devem ser compostos.

A natureza da linguagem: a linguagem é uma entidade viva e, por conseguinte, mutante. Logo, os algoritmos de aprendizagem de máquina precisam de adaptar a tais mudanças e, para tanto, requerem intervenção humana para indicar quais novas formas de expressão devem ser classificadas como discurso de ódio. 

Portabilidade: uma máquina de aprendizagem desenvolvida para uma dada língua, não se aplica diretamente a outras línguas. Mas do que isso, uma máquina, que foi ajustada para uma região de um país grande como o nosso, precisa levar em consideração regionalismos para realizar uma melhor predição e, tais detalhes, podem prejudicar a predição para outras regiões, mesmo sendo a mesma língua em todo o país.

Interpretabilidade: o processo que leva uma máquina de aprendizagem a tomar uma decisão ao invés de outra, muitas vezes, é indecifrável para humanos. Logo, tornar tais máquinas interpretáveis, pode proporcionar maior credibilidade e confiança ao processo; além de gerar questionamentos que podem ser utilizados para melhorar a precisão dessas mesmas máquinas.

Neste cenário, é promissor vislumbrar estratégias capazes de sinergicamente integrar algoritmos e pessoas, capturando o melhor de cada um.

Normalização dos atributos & Desempenho dos classificadores

Pré-processar os dados, antes de treinar uma máquina de aprendizagem, é uma etapa vital para se conseguir extrair o melhor de cada máquina. São várias as formas de pré-processar os dados e esta tarefa depende da aplicação em investigação. Por exemplo: em processamento de linguagem natural, é comum realizar a tokenization que objetiva separar sentenças em unidades menores, tais como palavras.

O foco desta post é o pré-processamento dos atributos com o objetivo de colocá-los em uma mesma escala, ou dentro de um mesmo critério, com o intuito de minimizar a influência indevida de um atributo sobre o outro. Esta tarefa é realizada por técnicas de scaling, muitas vezes chamadas de normalização.

Min-max scaler é a mais utilizada e difundida técnicas de scaling. Nela, cada um dos atributos é ajustado para caber em um intervalo, geralmente, entre 0 e 1. Outras técnicas de scaling permeiam as aplicações e, entre elas, destaco: standard scaler, maximum absolute scaler, robust scaler e quantile transformer.

Diante desse contexto com várias técnicas de scaling e vários classificadores, alguns questionamentos emergem:

  • Vale a pena normalizar os dados?
  • A escolha da técnica de scaling influencia no desempenho dos modelos de aprendizagem?
  • Qual técnica escolher para um dado classificador?
  • Quais classificadores são mais sensíveis às escolhas das técnicas de scaling?

Estas e outras questões são abordadas no artigo de Amorim et al. que realiza uma ampla avaliação usando 82 bancos de dados públicos e cinco técnicas de scaling. Foi mostrado que escolher bem a técnica de scaling melhora a precisão de classificadores. Em particular, algoritmos baseados em árvores de decisão são pouco sensíveis à escolha da técnicas de scaling. Logo, em alguns casos, não normalizar pode ser a melhor opção.

O nível de desbalancamento do banco de dados é um fator que influencia a escolha da técnica de scaling. O standard scaler obteve melhor desempenho em bancos de dados com baixos níveis de desbalanceameto, enquanto o quantile transformer apresenta-se como a melhor escolha para os níveis médio e alto de desbalanceamento.

Os autores também ressaltam que a melhor técnica de scaling para um sistema de múltiplos classificadores coincide com a melhor técnica empregada por seu classificador-base. Assim, a definição da melhor técnica de scaling, para um sistema de múltiplos classificadores, pode ser realizada avaliando o comportamento das técnicas em um classificador-base, o que torna todo o processo mais rápido e barato.

Sabendo que o emprego de técnicas de scaling é bastante negligenciado nas mais diversas aplicações, Amorim et al. colocam luz nesta questão e mostram que devemos ficar alertas em relação a esse ponto sensível, pois a escolha da técnica influencia significativamente o desempenho de modelos de classificação.

Lucas B.V. de Amorim, George D.C. Cavalcanti, Rafael M.O. Cruz, The choice of scaling technique matters for classification performance, Applied Soft Computing, 2023.

Definição do tema de pesquisa

A escolha do tema é uma etapa desafiadora e deve ser realizada antes do início da pesquisa. A diversidade de possíveis temas é imensa. Porém, independente da escolha, é importante verificar algumas questões que podem indicar se um caminho promissor será trilhado. Seguem algumas perguntas (figura a seguir) que devem ser levadas em consideração para ajudar nessa escolha:

Afinco e dedicação passam a ser palavras de ordem quando se trabalha em algo que se tem interesse, algo que supõe-se promissor. Essa motivação extra, que advém do prazer associado ao desenvolvimento de algo que lhe é importante, contribuí, uma enormidade, para se atingir o objetivo. Escolha um tema do seu interesse ou se interesse por um tema que lhe foi sugerido.

Caso você ainda não tenha conhecimento amplo sobre o tema, você deve estar disposto a amadurecer rápido. Esse amadurecimento será guiado pelo orientador. Ele lhe indicará referências (artigos, livros, teses, entre outras) que, por sua vez, devem ser de fácil acesso.

Outra questão diz respeito aos dados para realizar a pesquisa. Se os dados estiverem disponíveis, um trabalho a menos. Mas, se você tiver que coletar os dados, tenha o cuidado de analisar a viabilidade e, também, o tempo necessário para essa tarefa. Falando em tempo, averigue se o cronograma cabe no tempo que você dispõe para desenvolver a pesquisa.

Ligue o sinal de alerta se você respondeu não para alguma questão acima, pois o trabalho já é árduo quando essas variáveis estão sob controle. Para os que responderam sim, sucesso na pesquisa.