k-vizinhos mais próximos: uma análise

O algoritmo k-vizinhos mais próximos (do inglês, k-Nearest Neighbors – kNN) funciona da seguinte forma: dada uma instância de teste xq, o algoritmo encontra os k vizinhos mais próximos de xq no conjunto de treinamento. Em seguida, a classe de xq é dada pela classe que ocorrer com maior frequência entre os k vizinhos.

Na figura acima, são mostrados os cinco vizinhos mais próximos da instância de teste xq. Dessas cinco instâncias, 4 são da classe “+” (vermelha) e 1 da classe “0” (azul). Ao aplicar o kNN, com k=5, a instância xq é classificada como sendo da classe vermelha, pois essa classe possui mais representantes na vizinhança de xq.

Esse algoritmo possui dois parâmetros: o número de vizinhos (k) e a medida de dissimilaridade (ou de similaridade) usada para encontrar os vizinhos mais próximos. A distância Euclidiana é a medida mais amplamente usada para determinar os vizinhos, embora existam diversas opções. Em relação ao parâmetro k (número de vizinhos), várias alternativas para determinar o valor mais adequado por tarefa podem ser empregadas. Uma delas é avaliar o algoritmo kNN no conjunto de validação, adotando diferentes valores para k. O valor de k que alcançar a melhor precisão será escolhido para classificar todas as instâncias de teste.

Uma primeira diferença em relação a outras máquinas de aprendizagem, tais como árvore de decisão e multi-layer perceptron, é que, no kNN, a etapa de treinamento é caracterizada apenas pelo armazenamento das instâncias. A rigor, não há treinamento. Logo, a função que será usada para a tomada de decisão é definida em operação, analisando um subconjunto dos dados de treinamento, i.e., os k vizinhos mais próximos. Por esse motivo, pode-se dizer que o kNN é uma máquina de aprendizagem local.


Embora seja simples, vale destacar que o kNN constrói regiões de decisão não-lineares no espaço de características. Para ilustrar, a figura a seguir mostra como o espaço de características bidimensional é dividido quando emprega-se o kNN, com k=1. As linhas verdes delimitam a área de cobertura de cada uma das instâncias de treinamento (pontos pretos: x1, x2 e x3). Assim, qualquer instância de teste que se posicionar na região amarela será classificada como sendo da mesma classe da instância x1, pois essa será a instância mais próxima. Da mesma forma, instâncias localizadas na região laranja serão classificada pela classe de x2 e, na região azul, pela classe de x3.

Importante destacar que as regiões de cobertura mostradas na figura foram obtidas usando apenas um vizinho mais próximo (1NN). Ou seja, essas regiões podem ficam mais complexas ao adotar valores maiores de k. Além disso, uma caraterísticas interessante do kNN é que as regiões de coberturas podem ser facilmente modificadas ao inserir, remover ou reposicionar as instâncias.


Mas, o kNN possui algumas desvantagens:

Armazenamento: todas as instâncias de treinamento são armazenadas para posterior consulta, quando da chegada de uma instância de teste. Se o conjunto de treinamento possuir muitas instâncias, a quantidade de memória requerida para armazená-lo pode ser um problema. Uma alternativa, para aliviar essa questão, é usar algoritmos de redução de instâncias que têm o intuito de reduzir o número de instâncias no conjunto de treinamento.

Esforço computacional: a função que classificará uma instância de teste, só é definida em operação, usando os vizinhos mais próximos. Logo, o kNN requer um esforço de processamento, em tempo de execução, para vasculhar todo o conjunto de treinamento em busca dos vizinhos para cada instância de teste. Algoritmos de redução de instâncias também podem auxiliar para mitigar essa desvantagem do kNN.

Alta dimensionalidade: ao calcular a dissimilaridade (por exemplo: usando a distância Euclidiana) entre vetores que são representados por muitas variáveis, esse cálculo pode ser impreciso devido à alta dimensionalidade dos vetores. Uma maneira de atenuar essa questão é remover variáveis redundantes ou pouco relevantes, para fins de classificação, usando algoritmos de seleção ou de extração de características.


A figura a seguir mostra dois exemplos que ilustram uma instância de teste e seus cinco vizinhos mais próximos. Nesses dois exemplos, percebe-se que a instância de teste xq está bastante próxima das instâncias da classe “0” (azul). Mas, o kNN (k=5) classificará as duas instâncias de teste como pertencentes à classe “+” (vermelha), pois essa classe possui mais instâncias do que a classe azul na vizinhança de xq.

Nesses exemplos, a proximidade de xq em relação aos seus vizinhos não é levada em consideração. Apenas a quantidade de instâncias na vizinhança é usada para decidir a classe de xq. Mas, é possível encontrar variações do kNN que visam abrandar essa e outras propriedades previamente discutidas.

Combinação de classificadores: uma introdução

Ao treinar uma máquina de aprendizagem, muitos desafios espreitam o horizonte, entre eles: overfitting. Uma das alternativas para minimizar overfitting é escolher a máquina correta para a tarefa que se deseja resolver. Por exemplo: se tivermos poucos dados disponíveis, uma rede neural artificial pode não ser a melhor escolha; embora existam estratégias para gerar dados artificiais e aumentar a quantidade de dados de treinamento, tais como oversampling data augmentation. Uma escolha mais apropriada seria um algoritmo de instante-based learning, e.g., k-nearest neighbor. 

Escolher o melhor algoritmo de aprendizagem, por tarefa, é uma problema em busca de solução. Muitas abordagens que se valem de meta-learning já foram propostas, mas ainda existe muito terreno a percorrer nesse campo. Essa é uma pesquisa bem interessante e motivada, também, por um teorema de nome engraçado, mas, extremamente importante para a área, chamado de no free lunch theorem. Esse teorema nos indica que não existe uma máquina de aprendizagem que seja a melhor para todas as tarefas. Ou seja, cada tarefa tem suas peculiaridades que devem ser melhor resolvidas por máquinas que tenham características distintas. Nota: um teorema é uma afirmação provada como verdadeira; logo, essa difere de uma mera opinião.

Consequentemente, é responsabilidade do especialista em aprendizagem a escolha da melhor máquina para resolver uma nova tarefa. Mas, existe outra alternativa…

Se para cada tarefa, uma máquina deve ser escolhida, por que não unir esforços e juntar várias máquinas para resolver essa tal tarefa? Vox Populi, Vox Dei. vox-populi-vox-dei3Esse “poder das multidões” (wisdom of the crowd) é a premissa da área de Combinação de Classificadores (ensemble learning) que possui vários nomes, tais como: sistemas de múltiplos classificadores e máquinas de comitê. Esses sistemas combinam máquinas com o intuito de melhorar a precisão geral do sistema, fundamentando-se no argumento de que a junção das opiniões de um grupo de indivíduos é melhor do que a opinião de apenas um indivíduo.

Em um experimento, no início do século vinte, Sir Francis Galton — o mesmo que desenvolveu um método eficiente para classificação de impressões digitais — combinou a resposta de 787 pessoas que estimaram o peso de um boi morto e vestido. Ao calcular a média das respostas de todos os participantes, Galton observou que o erro foi menor do que um porcento (link). Ao invés de combinar as respostas de todos, Galton poderia ter escolhido o indivíduo mais competente para estimar o peso. Entretanto, essa escolha não seria uma tarefa trivial, da mesma forma que, escolher a melhor máquina de aprendizagem, por tarefa, não é uma tarefa simples. Assim, ao combinar todas as respostas, a probabilidade de escolher um indivíduo incompetente foi minimizada.

É inútil combinar máquinas que tenham o mesmo comportamento, ou seja, máquinas que acertem e errem as mesmas instâncias. Assim, ao juntar várias máquinas em um pool, é esperado que elas tenham um excelente desempenho em partes diferentes do espaço de características. Em outras palavras, é fundamental que as máquinas sejam diversas entre si. Existem várias maneiras de se obter diversidade, entre elas: usar diferentes algoritmos de aprendizagem e usar dados diferentes para treinar cada uma das máquinas.

Razões para combinar máquinas

Os aspectos que fortalecem o uso de estratégias de combinação de classificadores podem ser aglutinados em: estatístico, computacional e representacional. A figura ao lado é usada para explicar esses três aspectos. reasons-mcsNela, vê-se que o “espaço dos bons modelos”, para uma dada tarefa, é um subconjunto do “espaço dos modelos”. Esses modelos são máquinas de aprendizagem, de classificação ou de regressão, que foram treinadas com dados de uma tarefa específica. Além disso, o asteriscos (∗) representa o classificar ideal, os círculos (•) são os classificadores individuais e o triângulo (Δ) representa a combinação dos classificadores (ensemble). Objetiva-se obter um modelo o mais próximo possível do modelo ideal (∗). Nota: essa figura foi adaptada da figura 3.2 do livro da Kuncheva, 2014.

Estatístico

Na figura que mostra o aspecto Estatístico, percebe-se que o modelo combinado (Δ) está bem mais próximo do modelo ideal (∗) do que a maioria dos modelos individuais (•). Vale salientar que o modelo combinado não é o melhor, pois existe pelo menos um modelo (•) que está mais próximo do modelo ideal do que o modelo combinado. Entretanto, por melhor que seja o seu procedimento experimental, a incerteza relacionada à precisão do modelo, aferida durante o treinamento, pode levar a escolha de um modelo inadequado. Assim, ao combinar os modelos, minimiza-se a chance de selecionar um modelo ruim.

Computacional

Durante o treinamento, um modelo é levado do “espaço dos modelos” para o “espaço dos bons modelos” — conforme mostrado pelas curvas em cinza na figura do aspecto Computacional.  Cada um desses modelos (•) deve se posicionar em um mínimo local diferente da superfície de erro. Logo, a combinação desses modelos diversos gerará um modelo mais próximo do modelo ideal.

Representacional

Suponha que todos os modelos individuais (•) sejam lineares e que a tarefa, que se deseja resolver, seja não-linearmente separável. Logo, nenhum modelo, cuja representação é linear, será capaz de modelar essa tarefa. Por outro lado, ao combinar modelos lineares, regiões não-lineares podem ser modeladas. Assim, na figura que mostra o aspecto Representacional, percebe-se que o modelo combinado (Δ) está fora do “espaço dos modelos”, pois todos os modelo desse espaço são lineares e o alvo é um modelo não-linear que pode ser alcançado combinando modelos lineares. De maneira geral, regiões complexas de bordas entre classes podem ser modeladas usando modelos simples.

No próximo post, arquiteturas de combinação de classificadores — estática e dinâmica — serão discutidas.

Como evitar overfitting?

Não existe uma bala-de-prata para evitar overfitting. Boas práticas na condução de procedimentos experimentais, aliado ao entendimento do significado desse fenômeno, 99-ou-overfitting
contribuem para amenizar esse indesejável problema. Seguem alguns pontos a considerar para combater o overfitting.

treinar com mais dados

Se a máquina de aprendizagem usada é complexa, em termos da quantidade de parâmetros a ajustar, uma alternativa é adquirir mais dados com o intuito de equilibrar a quantidade de parâmetros versus a quantidade de instâncias de treinamento. Ou, simplesmente, deve-se escolher uma máquina mais simples, que tenha menos parâmetros.

validação cruzada

Uma das formas de realizar validação cruzada é usar o procedimento k-fold cross-validation. Nesse procedimento, o conjunto de dados é dividido em k partes, aproximadamente do mesmo tamanho, das quais, k-1 partes são usadas para treinar o modelo e a parte restante é usada para avaliar o modelo. Esse processo é repetido k vezes, de forma que cada parte será usada tanto para treinar como para avaliar o modelo. De maneira geral, a validação cruzada, por si só, não evita overfitting, mas segue uma boa prática ao separar o conjunto de teste e ao realizar um revezamento dos dados para uma melhor avaliação, no que tange a generalização do modelo em instâncias não vistas. Uma observação: o k-fold cross-validation não é uma boa opção quando o conjunto possui poucos dados.

parar o treinamento mais cedo (early stopping)

Máquinas de aprendizagem, tais como redes neurais artificiais, árvores de decisão, deep learning, entre outras, aprendem iterativamente. A cada passo, a máquina ajusta seus parâmetros aos dados e isso pode ser monitorado. Pode-se usar esse monitoramento para decidir qual é o melhor momento de interromper o treinamento da máquina. Espera-se que a precisão no conjunto de treinamento aumente com o tempo, mas, em relação ao conjunto de validação, a acurácia deve atingir um pico e depois cair. Esse pode ser um bom momento para frear o treinamento, antes que a máquina se sobreajuste aos dados.

regularização

Regularização é um conceito amplo que envolve várias técnicas com o propósito de produzir modelos que melhor se ajustem aos dados, evitando overfitting. Um exemplo é o procedimento de poda em uma árvore de decisão. Esse consiste em eliminar alguns “galhos” que, uma vez removidos, reduzirá a árvore, tornando-a mais simples e menos específica às instâncias de treinamento. Outros exemplos de técnicas de regularização envolvem dropout em redes neurais e adição de parâmetros de penalização na função de custo.

ensemble

Ensemble learning, ou sistema de múltiplos classificadores – SMC -,  combina as saídas de vários modelos com o intuito de melhorar a resposta final do sistema. Os SMCs têm alcançado resultados melhores do que o uso de modelos isolados. Esse sucesso deve-se a divisão de tarefas que é o espírito dessa área. Baseado no princípio de dividir-para-conquistar, cada modelo que compõe o SMC é treinado com parte do conjunto de treinamento e, consequentemente, acaba por se tornar um especialista nessa porção. Essa estratégia ajuda a amenizar o overfitting, e além disso, é robusta à presença de ruído nos dados.

 

Etapas de um sistema de aprendizagem de máquina

O desenvolvimento de sistemas, que usam algoritmos de aprendizagem de máquina, segue um fluxo diferente das abordagens tradicionais. A fonte dessa diferença reside na premissa básica de qualquer algoritmo de aprendizagem: extração de conhecimento a partir de dados históricos.  Assim, são descritas a seguir, cinco etapas para a construção de soluções que baseiam-se em aprendizagem de máquina.

etapa-1

Dado que os algoritmos de aprendizagem de máquina “aprendem” a partir de dados, a primeira etapa é a aquisição dos dados. O conjunto de informações coletadas pode ser armazenado de várias maneiras: sistema gerenciador de banco de dados, planilhas, ou mesmo em arquivo texto. Importante ressaltar que esses dados serão usados para treinar/calibrar o modelo (a máquina de aprendizagem), logo, devem representar toda a diversidade da tarefa sob investigação. Em outras palavras, não conjecture que o sistema irá classificar um pássaro como sendo beija-flor-tesoura, nome científico eupetomena macroura, se nenhum beija-flor dessa espécie está presente nos dados.

etapa-2

Os dados coletados na etapa anterior devem ser tratados com o intuito de prepará-los para o processo de treinamento do algoritmo de aprendizagem. Alguns procedimentos comuns são: seleção de variáveis, redução de instâncias, extração de características, imputação de dados faltantes e análise de outliers. Vale salientar que esse processamento, muitas vezes, está atrelado ao algoritmo de aprendizagem que será usado na etapa seguinte. Isso se dá, pois, algoritmos diferentes, possuem requisitos diferentes. Por exemplo: alguns algoritmos lidam apenas com dados que estejam representados com valores numéricos, outros apenas com valores categóricos. Logo, é necessário converter variáveis categóricas em numéricas, ou vice-versa, dependendo do algoritmo.

etapa-3

Nessa etapa, o algoritmo de aprendizagem de máquina, que melhor adere aos dados, é escolhido para treinar o modelo. Essa escolha deve levar em consideração vários pontos, entre eles: quantidade de instâncias e de variáveis no banco de dados e existência de desbalanceamento entre as classes. Além disso, deve-se atentar ao tipo de aprendizagem: supervisionado, não-supervisionada, semi-supervisionada ou por reforço. E, no caso de ser supervisionado, se o problema é de classificação ou de regressão. Dentre os modelos mais comumente usados, é possível citar: árvore de decisão, redes neurais multi-layer perceptronrandom forest, support vector machines, k-nearest neighbours, XGBoost, logistic regression, k-means, naive bayes, apriori e expectation-maximization. Por fim, vale destacar os sistemas de múltiplos classificadores (ensemble learning) que, ao invés de usar apenas uma máquina, combinam várias máquina de aprendizagem, a fim de melhorar a precisão final do sistema. 

etapa-4

O modelo treinado deve ser avaliado para que seja possível predizer sua precisão em uso. Várias medidas podem ser usadas para aferir a performance do modelo e, a escolha da medida depende da tarefa que se deseja resolver. Exemplos de medidas: acurácia, f-score e curva ROC. Vale ainda frisar que o modelo deve ser avaliado com dados diferentes dos que foram usados para treiná-lo. Assim, os dados devem ser divididos em dois conjuntos disjuntos: treinamento (usada para treinar o modelo) e teste (usado para avaliar o modelo). Quando a estimative de desempenho de um modelo, em dados nunca vistos (dados de teste), é otimista, diz-se que ocorreu overfitting. Esse é, provavelmente, o maior problema de aprendizagem de máquina.

etapa-5

Após a avaliação do modelo, caso o desempenho esperado não tenha sido alcançado, faz-se necessário aperfeiçoar o modelo. As possíveis causas dessa inadequação devem ser investigadas e, caso necessário, retorna-se para a aquisição de novos dados (etapa 1), para o processamento dos dados de um forma diferente (etapa 2) e/ou para o treinamento de um novo modelo, possivelmente, usando um algoritmo de aprendizagem diferente (etapa 3).

Como representar uma tarefa de aprendizagem de máquina: handcrafted features vs feature learning

Quando tomamos uma decisão, usamos uma grande quantidade de variáveis e de hierarquias de variáveis. Muitas vezes, nem nos apercebermos da importância dessas variáveis, pois, a complexidade de algumas decisões está além do nosso entendimento. Para ilustrar: você poderia me explicar, em detalhes, como reconhece seu amigo? Quais características, seus sistemas (visual, auditivo, …) analisam, a fim de identificá-lo com precisão?

Ok, vamos para um exemplo mais palpável. Suponha que desejamos comprar um carro. De pronto, nos vem a mente, uma série de variáveis que devemos avaliar: preço, cor, consumo de combustível, procedência, entre outras. Essas características nos ajudam a decidir, se iremos ou não comprar o carro.

De maneira similar, o conjunto de características, que apresentamos à máquina de aprendizagem, é de imperativa importância para que ela consiga tomar a melhor decisão. A escolha dessas características é uma tarefa não trivial, principalmente, quando não temos um especialista para nos ajudar no problema que desejamos resolver (e.g., comprar um carro usado sem a ajuda de um mecânico).

Em aprendizagem de máquina, essas características (features, em inglês), também chamadas de variáveis ou atributos, são fundamentais para o sucesso do processo de aprendizagem. Mas, geralmente, não sabemos quais são as características mais relevantes, consequentemente, decidimos por usar um grande número de características.  Assim, corre-se o risco de que algumas delas sejam irrelevantes ou mesmo prejudiciais para o treinamento da máquina de aprendizagem. Com o objetivo de reduzir essa quantidade de características e por conseguinte, aliviar a maldição da dimensionalidade, a alternativa mais comum é usar algoritmos de seleção de características. Esses algoritmos têm o papel de buscar o melhor subconjunto de características, a fim de realizar com sucesso, a tarefa que temos em mãos.

Mas, para selecionar características, precisamos, em primeiro lugar, ter as características. Essas características podem ser obtidas de duas formas: manual (handcrafted features) ou podem ser aprendidas (feature learning).

hand-crafted-vs-feature-learningNa primeira forma, handcrafted features, um conjunto de características é recomendado por um especialista, com a ajuda de um cientista de dados, e esse processo é chamado de feature engineering. Tal processo é mostrado no caminho superior da figura acima, no qual, o trabalho do especialista é definir as características (e/ou algoritmos extratores de características), que serão usadas para representar uma árvore. Após essa definição, um modelo é treinado, com o intuito de rotular como “árvore”, toda imagem de árvore que for dada como entrada ao sistema. Vale salientar, que se poucos especialistas estiverem disponíveis no mercado, o custo de seus serviços será alto. Todavia, mesmo se os especialistas estiverem disponíveis, a tarefa é inerentemente difícil. Não é incomum que especialistas discordem (links: 1, 2, 3, 4).

Dado que <manual> feature engineering é uma tarefa cara e difícil, como evitá-la? Uma alternativa é construir máquinas capazes de realizar essa tarefa automaticamente. Ou seja, ao invés da busca ser feita por humanos, podemos delegar a tarefa de encontrar as melhores características para um algoritmo. Esse procedimento é chamado de feature learning (mostrado como sendo o caminho inferior da imagem acima). A boa notícia é que algumas máquinas já fazem esse trabalho. Arquiteturas de aprendizado profundo (deep learning – DL) estão sendo usadas para esse fim, especialmente, para tarefas que envolvam imagens, voz e texto.

Não é à toa, que DL tem se destacado nas manchetes dos noticiários ultimamente. Ela tem obtido resultados bem superiores às handcrafted features em várias aplicações, e esse sucesso deve-se ao fato de que as características são aprendidas a partir dos dados do problema. Em outras palavras, essas características são automaticamente extraídas dos dados originais, por algoritmos que buscam minimizar o erro global do sistema. Logo, o conjunto de características gerado é dependente do problema, ou seja, são personalizadas para cada conjunto de dados de treinamento.

Ganha-se em precisão, perde-se em interpretabilidade. Essa é uma desvantagem de DL. As características aprendidas não possuem explicação conhecida no mundo real. Nesse sentido, o processo realizado pela DL, ao aprender as características, é, de certa forma, semelhante ao processo que trilhamos, por exemplo, ao reconhecer uma pessoa. Sabemos que funciona… mas não conseguimos explicar em detalhes como realizamos essa tarefa.

Outro fator limitante está relacionado à abrangência. Sabemos como aprender automaticamente características interessantes, quando os dados de entrada são imagens, voz e texto. O desafio agora é expandir esse aprendizado automático para outras aplicações, que ainda requerem a manufatura de características.